
© koninklijke brill nv, leiden, 2016 | doi: 10.1163/22105832-00602002

Language Dynamics and Change 6 (2016) 235–283

brill.com/ldc

Applying Population Genetic Approaches
within Languages
Finnish Dialects as Linguistic Populations

Kaj Syrjänen
University of Tampere

kaj.jaakko.syrjanen@uta.fi

Terhi Honkola
University of Turku

terhi.honkola@utu.fi

Jyri Lehtinen
University of Helsinki

jyri.lehtinen@helsinki.fi

Antti Leino
University of Tampere

unni-paiva.leino@uta.fi

Outi Vesakoski
University of Turku

outi.vesakoski@utu.fi

Abstract

The adoption of evolutionary approaches to study language change as a type of non-
biological evolution has gained increasing interest and introduced a variety of quan-
titative tools to linguistics. The focus has thus far mainly been on language families,
or ‘linguistic macroevolution,’ and taken the shape of linguistic phylogenetics. Here
we explore whether evolutionary methods could be applicable for studying intra-
lingual variation (‘linguistic microevolution’) by testing a population genetic cluster-
ing method for analyzing the ‘population structure’ of Finnish dialects. We compare
the results with traditional dialect divisions established in the literature and with k-
medoids clustering, which is free from biological assumptions. The results are encour-
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agingly similar to each other and agree with traditional views, suggesting that popula-
tion genetic tools could be a useful addition to the dialectological toolkit.We also show
how the results of the model-based clustering could serve as a basis for further study.
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1 Introduction

Withwritten accounts dating back to at least the 14th century (Heeringa, 2004),
dialects have generated a great deal of interest among language researchers
over the years,with systematic dialect study (dialectology) beginning in the late
nineteenth century (Chambers and Trudgill, 1998). Dialectology has generally
focused mainly on traditional (non-quantitative) research, although statisti-
cal analyses have also gained foothold from the 1950s onwards (ibid.). Current
dialectology includes a number of computational approaches, includingmulti-
variate analyses, dialectometry, Levenshtein distances, clustering, andmultidi-
mensional scaling (e.g., Heeringa, 2004; Leino et al., 2006; Hyvönen et al., 2007;
Leino and Hyvönen, 2008), and newmethods continue to be developed.

Quantitative methodology from biology might provide a useful addition
to the repertoire of dialectological tools. Biological methods have gradually
seeped into other linguistic fields, most notably historical linguistics, where
they areused to study ‘linguisticmacroevolution’—e.g., language classification,
divergence history, and the forces driving linguistic divergence (cf., e.g., Gray
and Atkinson, 2003; Lee and Hasegawa, 2011; Honkola et al., 2013; Syrjänen et
al., 2013; Lehtinen et al., 2014). In studying linguisticmacroevolution, languages
are regarded as roughly analogous to species. It might be possible to take this
analogy a step further: in a similar way as species have internal variation, which
may cluster into populations, languages also have language-internal variation,
whichmay cluster into dialects. Studies on biological populations focus specif-
ically on studying this variation with specific tools in their own research fields
(including, e.g., population genetics and population ecology). This provides
the interesting possibility of approaching dialects from a ‘microevolutionary’
perspective, adopting approaches from disciplines designed to explore within-
species variation to the study of intra-lingual varieties. In this paper, we exam-
ine the applicability of this ‘microevolutionary’ approach to dialect studies.
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Ourdata comes fromanatlas of Finnishdialects collectedat thebeginningof
the 20th century (Kettunen, 1940a), whichwe analyze using population genetic
clustering before comparing this analysis with a generic distance-based clus-
teringmethod. Both analyses are also compared against dialectological studies.
The study focuses largely onmethodological exploration; Finnish dialects, with
their extensive study history, provide a good baseline for this. While cluster-
ing plays a large role in this study, our main purpose is not to determine the
number of dialects best supported by population genetic analyses but, rather,
to achieve an in-depth view of dialect clustering as the initial stage for more
advanced analyses.

We begin by briefly introducing the underlying theoretical framework—i.e.,
languages and dialects from an evolutionary perspective. Next, we take a look
at earlier dialectological research, outlining how Finnish has been divided into
dialects in the past. We also take a look at quantitative dialectology related to
Finnish dialects. We then introduce the data and the methods employed in
this paper. Finally, we evaluate and discuss the results in the light of Finnish
dialectology, and conclude by presenting some examples of analyzing dialects
with population genetic tools that go beyond the clustering step.

2 Background

2.1 Linguistic Evolution: How Languages and Dialects Resemble Species
and Populations

The present study does not require extensive familiarity with the full range of
analogies and similarities proposed between biological species and languages,
which date back all the way to Darwin. Here, we focus on what we consider
to be the three most important analogies or similarities, which serve as the
foundation for applying biologicalmethodology to study language data. Firstly,
both have discrete heritable units. Secondly, these heritable units are packed in
spatiotemporal “containers”—the individuals, which are typically structured
in groups (populations). Thirdly, the individuals and the populations are sus-
ceptible to internal and external forces affecting the variant frequencies of the
shared heritable units over time. In the following, we discuss these points in
more detail. An in-depth evolutionary analysis of languages, largely compatible
with what is discussed here, can be found in Croft (2000); a concise selection of
analogies, which is also generally compatible with themodel we describe here,
can be found in Pagel (2009).

Regarding the first similarity, the heritable units in biology—the genetic
information carried by organisms, e.g., genes, alleles, nucleotides and amino
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acids—primarily transfer vertically from parents to offspring through genetic
inheritance. Additionally, horizontal gene transfer has been occasionally found
to occur (e.g., Gasmi et al., 2015), and the early stages of life were presumably
characterized by extensive horizontal gene transfer among prokaryotes (e.g.,
Campbell et al., 2008). The heritable units in languages—e.g., words, phrases,
constructions—are transmitted via communication between individuals. This
shows a significant difference between biological species and languages: in
biology, the heritable units are carried over to a newly created individual (the
offspring), while their linguistic counterparts are carried over to an existing
speaker. What is similar in both cases is that the heritable units are continu-
ously transferred between individuals or organisms that are part of that system,
making it possible for the heritable units to persist to a considerable degree
across generations. A characteristic that both these systems share, and one
which makes them ‘evolutionary,’ is that the variant frequencies of the heri-
table units change over time.

Both languages and species involve individuals serving as carriers for the
heritable units—the second crucial similarity between languages and biologi-
cal species. In the case of both sexual reproduction and linguistic transmission,
the transfer of heritable units necessitates interaction between the individuals.
In both processes the individuals do not interact uniformly with all the other
individuals, so the variants of the heritable units within a single species or lan-
guage are distributed unevenly. For this reason, it is possible, with both sexually
reproducing species and languages, to identify subgroups of individuals whose
variants of heritable units (geneticmaterial or linguistic information) are closer
to each other than they are to those of the other individuals. In biology, these
groups are called ‘populations,’ and they can be regarded as being analogous to
dialects. Individuals in a biological population are generally capable of inter-
breedingwith themembers of another population, but tend to interbreedmore
within their own population. Over time, this forms a clear detectable pattern
in the shared heritable units. This is largely analogous with how the speakers
of a dialect are more likely to communicate with each other, although they are
generally capable of communicating with the speakers of other dialects. Due
to this preference, a distinct pattern of linguistic units—a dialect, or more gen-
erally, a linguistic variety—emerges.1

1 The similarity between language-internal varieties and biological populations can be seen
in Croft’s (2000) analogy between traditional geographical dialects and geographical races,
as well as his analogy between social networks and biological demes. Similarly, Pagel (2009)
likens dialects and dialect chains with geographical clines.
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The third essential similarity between languages and biological species,
which is also true of within-species populations and intra-lingual varieties, is
that the differences we can observe in the heritable units can essentially be
modeled as a combinationof unpredicted (non-directional) changes anddirec-
tional changes (selective pressures) (Croft, 2000; Levinson and Gray, 2012). The
selective pressures are of course different for the two; for instance, social factors
arguably act as an important type of selective pressure in the linguistic realm.
Their closest counterparts in thebiological realmcouldbewithin-species inter-
actions, suchas competition,which, however, donothave asmuchprominence
as social selectiondoes for languages. Although thebiological and the linguistic
realms generally operate under different rules and are influenced by separate
selective pressures, they are not entirely disconnected: the speakers themselves
are entities in the biological realm, and therefore also subject to biological pres-
sures. However, wemust also remember that humans counteract many biolog-
ical selective pressures with cultural adaptations, making the overall picture of
different selective pressures quite complex.

The aforementioned similarities between languages and intra-lingual vari-
eties and biological species and within-species populations serve as the basis
with which languages can be modeled under an evolutionary linguistic frame-
work. The study of the evolutionary processes involving species (phylogenet-
ics) and within-species populations (population genetics) are two distinct
sub-disciplines of biology that share a general theory, but use different ap-
proaches—one designed to reveal a tree or network describing a large-scale
pattern of accumulated changes, the other to describe minute differences
between individuals of the same species. In a similar way we describe the
present study, which focuses on modeling dialects with population genetic
tools, as the study of “linguistic microevolution,” to contrast it with studies
focusing on differences between languages—“linguistic macroevolution”—
such as phylogenetic linguistics.

2.2 Finnish Dialect Division
Subjective accounts of Finnish dialects are as old as written Finnish, with one
of the earliest descriptions found in Mikael Agricola’s foreword for the New
Testament (Agricola, 1548). Systematic dialect research is generally considered
to have begun around the nineteenth century, motivated partially by growing
interest in national history and fieldwork focusing on collecting oral tradi-
tion (Hovdhaugen et al., 2000). Dialectology remained among the most active
topics in Finnish linguistics until the mid-twentieth century, when variation-
ist studies shifted more towards sociolinguistics (Hurtta, 1999). As a whole,
the bulk of Finnish dialectology is traditional work, the large majority being
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detailed descriptions of individual dialects and dialect areas based on field-
work, although some works have focused on Finnish dialect variation as a
whole, such as Kettunen (1930, 1940a, 1940b), Hakulinen (1950), Rapola (1969),
and Hormia (1978).

There is a fairly good consensus on the categorization of Finnish dialects.
The most common general division splits the language into two principal
dialect areas, eastern and western. This dichotomy was characterized as early
as the 18th century by Vhaël (1733), and became the default division in the
early 19th century (Rapola, 1969; Wiik, 2004). It is regarded as the clearest
general division of Finnish dialects, and also serves as the foundation for more
fine-grained divisions, particularly those that emphasize morphological and
phonological features.

The eastern and western dialects are often subdivided into seven, or nowa-
days often eight main dialects (e.g., Itkonen, 1964; Savijärvi and Yli-Luukko,
1994), which are generally clear, although slight variation can be found (e.g.,
Mielikäinen, 1991; Leskinen, 1992). Itkonen (1964; 1989) is often considered the
‘gold standard’ of the eight-way division, splitting the western dialect area into
Southwest, Southwest transitional, Häme, South Ostrobothnia, Middle/North
Ostrobothnia, and Far North, and the eastern dialect area into Savo and South-
east (Fig. 1).

Although the two-way division remains the default division for Finnish,
three-way divisions have also been suggested. According to Rapola (1969), one
of the oldest of these is from 1777, when Erik Lencqvist suggested a division of
Finnish into 1) theTurkudialect, coveringparts of the Southwest andSouthwest
transitional dialects, 2) the Ostrobothnian dialect, which also included Häme,
and 3) the Savo dialect. In essence, this suggested Itkonen’s (1964) Southwest as
a main dialect area rather than a subdivision. The three-way division has gen-
erated some later discussion by Mielikäinen (1991) and Paunonen (1991; 2006),
who have suggested that synchronic typological features, among others, could
be seen as support for making Southwest a main dialect area. Another kind
of three-way division splits Finnish into eastern, western and northern areas,
with the northern area being essentially amixture of eastern andwestern influ-
ence. This division was originally proposed by Warelius (1848), and has been
discussed later in Leino et al. (2006) and Hyvönen et al. (2007), among others.
The east-west-north trichotomy has been suggested to be more prominent at
the lexical level, whereas the two-way division (east-west) is more prominent
at the morphological and phonological levels.

There are also some grounds for suggesting four principal dialect areas.
Paunonen (2006), going beyond Lencqvist’s trichotomy, suggests that, from a
synchronic standpoint, Finnish should be divided into 1) Southwest dialects,
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figure 1 The ‘gold standard’ of Finnish dialect divisions, suggested by Terho Itkonen
(Itkonen, 1964). The main areas are: Southwest (1a–b), Southwest transitional
(2a–e), Häme (3a–f ), South Ostrobothnia (4), Middle/North Ostrobothnia
(5a–b), Far North (6a–e), Savo (7a–h), and Southeast (8a–d). The primary
division of these dialects is between western dialects (1–6) and eastern dialects
(7–8).
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2) Western dialects (covering Southwest transitional dialects, Häme dialects,
and South Ostrobothnian dialects), 3) Eastern dialects (covering Savo and
Southeast dialects), and 4) Northern dialects, covering Middle/North Ostro-
bothnia and Far North.

2.3 Quantitative Dialect Studies of Finnish
In this section, we look at four quantitative (‘dialectometrical’) works on Finn-
ish dialects: Wiik (2004), Leino et al. (2006), Hyvönen et al. (2007), and Leino
and Hyvönen (2008), all of which—like the present paper—explore Finnish
dialects as awhole.2 These do not represent thewhole range ofmethodswithin
quantitative dialectology; more on the subject can be found, e.g., in Chambers
and Trudgill (1998), Palander (1999), Nerbonne and Kretzschmar (2003), and
Heeringa (2004).

Wiik (2004) is perhaps themost comprehensive quantitative take onFinnish
dialects thus far. He presents a numerical interpretation of the Dialect Atlas
of Finnish (Kettunen, 1940a), executed by counting co-occurring isoglosses by
drawing each of the dialect atlas maps on transparent slides, visually inspect-
ing the stacked slides and compiling progressively larger composite slides until
he arrives at a summary of the entire atlas.Wiik reflects his calculationsmainly
against standarddialect divisions: the east-west dichotomyand Itkonen’s (1964)
eight-way division (see Section 2.2). The subgroups of each dialect area are also
discussed carefully, and each of these is reflected againstWiik’smeasurements.
Thework also outlines ‘core areas’ for each dialect, based on the coverage of the
dialect features that have been considered ‘primary’ for eachdialect. In general,
the work does not attempt to redefine the dialect division from a quantitative
perspective, but, rather, to explore and refine the eight-way dialect division.
To some extent, the work resembles Séguy’s dialectometrical additions to the
Atlas Linguistique de la Gascogne (see, e.g., Chambers and Trudgill, 1998, for an
overview).Whatmakes thework quite impressive is that it has been conducted
mostly manually, using the paper version of the dialect atlas.

The main focus of Leino et al. (2006) and Hyvönen et al. (2007) is on lexical
variation, making it an interesting exception among current dialect studies

2 Alongside these studies, we should also mention Embleton and Wheeler (1997; 2000), who
have contributed to quantitative dialect studies of Finnish by creating the digitized version
of the Dialect Atlas of Finnish, and have used it to explore mds techniques for visualizing
dialect information. Another noteworthy dialectometrical investigation which we did not
include here is the study by Palander et al. (2003), focusing on the regional dialects of
Savonlinna.
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of Finnish, which are predominantly morphological and phonological. They
employ multivariate analyses adopted from data mining, including principal
component analysis, independent component analysis,multidimensional scal-
ing, and distance-based clustering, to explore the distribution maps produced
in the course of editing the Dictionary of Finnish Dialects (Tuomi, 1989). Their
results agree surprisingly well with traditional dialect studies, with the excep-
tion that the lexical data appears to fit a generalization using a north-east-west
trichotomy similar to the one suggested by Paunonen (1991; see Section 2.2)
better than the east-west dichotomy.

Leino and Hyvönen (2008) expand the work started in Leino et al. (2006)
andHyvönen et al. (2007) to includemorphophonological variation, using data
from the digitized Dialect Atlas of Finnish (Embleton andWheeler, 1997; 2000)
alongside the Dictionary of Finnish Dialects. Like in their previous works, they
explore various approaches for analyzing thedata: factor analysis, non-negative
matrix factorization, aspect Bernoulli, independent component analysis, and
principal component analysis. They prefer these methods over the distance-
based clustering methods (such as k-medoids) included in their earlier work,
because the former do not impose sharp boundaries and are thus a more
natural choice for dialects. The work highlights how differently the methods
perform with these two datasets, which differ significantly from one another
with respect to both content and quality. Based on their tests, the authors
present further results using factor analysis, which they found to perform
reasonably well with both datasets. These results, perhaps more than anything
else, highlight how lexical and morphophonological data reveal different but
not entirely conflicting variation patterns.

All four works relate to this study in significant ways. The data we examine
is the same that Wiik (2004) and Leino and Hyvönen (2008) used, although
differently represented. Our analyses represent partitional (non-hierarchal)
clustering, also employed as part of the studies by Leino et al. (2006) and
Hyvönen et al. (2007). Notable differences to the existing studies include our
almost exclusive focus on partitional clustering, and our usage of population
genetic thinking and tools.
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3 Materials andMethods

3.1 Finnish Dialect Atlas
The data used in the analyses comes from the Dialect Atlas of Finnish (Ket-
tunen, 1940a), compiled by Lauri Kettunen3 in the 1920s and 1930s. During this
period, he travelled across Finland, interviewing informants and documenting
local regional speech. According to Kettunen’s travelmemoirs (Kettunen, 1960)
he generally interviewed at least two informants per municipality, and made
efforts to find more in ambiguous cases. He looked for informants by consult-
ing local priests and visiting old people’s homes and prisons, searching for old
and uneducated locals that had been living in the area for their whole life. The
resulting dialect atlas (Kettunen, 1940a) mainly documents the distribution of
morphological and phonological phenomena, with less information about lex-
ical variation. It was accompanied by an explanatory book (Kettunen, 1940b),
and is closely related to his earlier dialect book (Kettunen, 1930), which was
intended to serve as an introduction to the atlas.

The atlas covers 213 linguistic features, presented as separate maps (see
Fig. 2), with information from 525 sites (municipalities). It includes all of Fin-
land except exclusively Swedish-speaking areas, located on the western and
southern coast of Finland. It also covers Finnish-speaking areas in Ingria (Rus-
sia), Norway, and Sweden, as well as Karelian-speaking areas in pre-wwii Fin-
land. Each map shows the distribution, by municipality, of the different vari-
ants of linguistic features. The atlas does not document responses from each
informant individually; the data points represent the combined information
from all the informants from each municipality. The number of variants per
page ranges from 2 to 15, and the number of variants per municipality ranges
from 1 to 4. Embleton and Wheeler (1997) estimate that the atlas covers up to
36 times as many dialect “facts” as the Survey of English Dialects.

The basic study unit of the atlas is “the dialect variant in a municipality.”
While, theoretically, this results in 111,825 study units, the atlas does not cover
all of them; data ismissing from8.1 percent of the study units. Especially certain
peripheral areas have gaps in the data: for instance, there are twelve munici-
palities with less than 100 dialect features. These include six municipalities in
Northern Lapland, three mainly Swedish-speaking municipalities on the coast
ofOstrobothnia, two islands in theBaltic Sea, and amunicipality inKarelia. The
area with most gaps appears to be Lapland. This is significant, as the munici-

3 Information on South Ostrobothnia was not collected solely by Kettunen but instead taken
from Laurosela’s (1922) work on the South Ostrobothnian dialect.
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figure 2 An example page from the Dialect Atlas of Finnish (Kettunen, 1940a). The legend in
the upper right lists the variants of the dialect feature that the map covers. The
depicted page 8 documents morphophonological variation within the wordmetsä
(‘forest’).
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palities in that area are fairly large. Despite the gaps, we analyzed the data as a
whole in this study, using data from all the map pages and municipalities.4

Our analyses required a computerized version of the atlas, available thanks
to the work by Sheila Embleton and EricWheeler as part of the Finnish Dialect
Atlas Project, funded by the Social Sciences and Humanities Research Council
of Canada in co-operation with the Institute for the Languages of Finland
(Kotus) (Embleton and Wheeler, 1997; 2000). An additional round of error-
checking for the digitized atlas was carried out by one of the authors of this
paper. An online version of the data was published by Kotus in 2015 (http://
avaa.tdata.fi/web/kotus/aineistot).

3.2 Data Formatting
For this study, the dialect data needed to be in a format compatible with our
two analyses—Structure and k-medoids (see Section 3.3). The present section
explains how this was accomplished.

Genetic data—more specifically, alleles (variants of a gene) sampled at spe-
cific loci (locations of the gene) from several individuals of the same species—
serve as input data for Structure, the population genetic analysis tool used in
this study to infer dialect populations from the information within the dialect
atlas (see Sections 3.3.1–3.3.3 below). In order to infer dialect populations with
Structure, we treat the 525 municipalities as individuals, the 213 map pages
(each of which describes the distribution of the variants of a particular dialect
feature) as genetic loci, and the variants within each map page as alleles.

Biological organisms differ in how many sets of chromosomes they have.
Mammals are generally diploid, i.e., they have two sets of chromosomes, mean-
ing that each locus has two alleles: one inherited from themother and one from
the father. If a diploid organism has inherited the same allele for a certain locus
from both parents, it is homozygous for that locus; if it has two different alleles,
it is heterozygous. Other organisms exist (e.g., male bees, wasps, ants, certain
life stages of algae, ferns andmushrooms) that arehaploid; these have one set of
chromosomes and thus one allele in each locus. There are also polyploid organ-
isms, with 3 or more alleles.

4 This decision is not without problems. In addition to the gaps within the data, Wiik (2004)
has pointed out that the features in the atlas range from very generic to very specific, and
including all of them as they are gives both types equal weight. Furthermore, the atlas
includes some complex phenomena, meticulously documented across multiple map pages.
Finally, some of the recorded features in the atlas concern only a small area of Finland,
meaning that the data for these features is missing frommost municipalities.

http://avaa.tdata.fi/web/kotus/aineistot
http://avaa.tdata.fi/web/kotus/aineistot
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Most study units (94.3 percent) in the dialect atlas are “haploid,” with only
onevariant of a linguistic featurepermunicipality. For example, onmap8of the
atlas (Fig. 2), representing variants for “forest,” the easternmost municipalities
aremarked with just one symbol (a horizontal curvy line); in the digitized data
this is represented by 3 (referring to the third box in the legend). In contrast,
some of the municipalities in the east are “diploid,” as they are marked with
both red triangles and crosses. In the digital version, this is marked as (12, 13),
i.e., the twelfth and thirteenth boxes in the legend. In total, 5.6 percent of the
studyunits are “diploid.” A small number of the studyunits (0.1 percent) include
3 or 4 overlapping variants. Of these, the third and fourth variantwere excluded
for the sake of simplicity.

In this work we represent the data in two forms, haploid and diploid, and
analyze both of them. Our main focus is on the diploid representation, as it
covers almost all of the variation in the atlas. In contrast, the haploid version
only covers the firstmarked variant for each linguistic feature. Following Struc-
ture’s guidelines, for the diploid coding, the study units with two variants were
left as they were—e.g., (12, 13); in cases with only one variant, the variant was
duplicated—e.g., 2 became (2, 2).

3.3 ClusteringMethods
3.3.1 Model and Distance-Based Clustering
The organization of data into meaningful subgroups (clusters or populations;
in the following, these terms are essentially interchangeable) has been of great
interest in many fields, including dialect studies and biology, resulting in a
wide selection of clustering methods (e.g., Kriegel et al., 2009) based on differ-
ent principles. Our focus in this study is on partitional clustering approaches,
which produce non-hierarchal groups and are often used in inferring popula-
tion structure from genetic data. Clustering can be roughly divided into two
types: model-based and distance-based (Pritchard et al., 2000). Both of these
clustering types are used in this paper, and introduced below.

In model-based methods, each cluster is assumed to be generated by a
specific probability model. Model-based clustering aims to infer the probabil-
ity models representing the clusters from the data itself, and place the data
into these clusters as accurately as possible. Model-based methods tend to be
computationally intensive, and have only recently gained foothold in research
through tools based on Bayesianmcmcmethods. In this study, we use amodel-
based clustering tool called Structure (Pritchard et al., 2000), designed to infer
population structures from genetic data. The method has been applied earlier
to cluster languages and language varieties (Dunn et al., 2008; Reesink et al.,
2009; Bowern, 2012); here, we use it specifically to study intra-lingual variation.
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In contrast to model-based clustering, distance-based clustering is more
straightforward: a distance or a similarity function is specified, and is used to
measure distances between data points and cluster together points that are
close to each other. Such approaches are older thanmodel-basedmethods and
generally computationally faster. The distance-basedmethod we use here is k-
medoids (Kaufman and Rousseeuw, 1987), a method which has been applied
to the study of Finnish dialects previously (Leino et al., 2006; Hyvönen et al.,
2007).

3.3.2 Structure
As a population genetic clustering approach, we use Structure (Pritchard et al.,
2000), a model-based software that uses Bayesian methods to infer biological
populations from genetic data (see Beaumont and Rannala, 2004, for a general
overview). Structure is not the only software of its kind; tools built on similar
principles include, e.g., baps (Corander et al., 2003) and tess (Chen et al.,
2007).

As explained in Pritchard et al. (2000), Structure is designed to analyze a set
of alleles (variants of a gene) sampled from individuals of the same species.
The individuals can be assumed to originate from one ancestral population or
have an admixed origin from several populations. Structure treats the ancestral
populations and the placement of the individuals into the populations as
separate unknown parameters, which it endeavors to estimate simultaneously.
The ancestral populations are represented by a model that specifies the allele
frequencies for each locus, i.e., how widespread each allele is within each
population. Structure infers a division by assigning a population to each of the
data points, and then estimates the overall likelihood of the solution using the
allele frequencies it has inferred for the ancestral populations. Then, following
standardBayesianmcmcmethods, oneof theunknownparameters ismodified
while the remaining parameters are retained, and a likelihood score for this
new solution is estimated. If the new solution has a higher likelihood than the
previous solution, it is accepted; if not, it is accepted with a probability of a/b,
where a is the estimated likelihood of the current solution and b the estimated
likelihood of the previous solution. The algorithm repeats the procedure of
randomly modifying another unknown parameter, calculating the likelihood
of the new solution, comparing it to that of the previous solution, and storing
the results at predefined intervals until the resulting distribution of solutions
gradually converges on the most optimal solution(s). Each finished analysis
includes a likelihood estimate of the data when divided into k populations
(with k, the number of populations, specified by the user; see below), which
Structure summarizes from the entire mcmc run. Since the analysis generally
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starts with many unknowns for which arbitrary starting values are chosen, the
iterations at the beginning of the analysis are not informative and possibly
even misleading. For this reason, these initial results, referred to as ‘burn-in,’
are discarded (Pritchard et al., 2000).

With the admixture model, Structure produces soft or fuzzy populations by
assigning each data point (municipality) a degree of membership (ic [inferred
cluster] value; see Section 3.5 for further explanation) in each ancestral pop-
ulation. This makes it possible to infer a mixed origin for the data points. For
this reason, this model is naturally suited for dialects, which may often involve
gradual transitions fromone variety to the next. In contrast, the distance-based
k-medoids clustering (see Section 3.3.4 below) only infers hard clusters, where
a data point can only belong to one of the clusters.

Structure requires the user to specify how many populations to infer, i.e., to
predefine k, the number of populations; so it is useful to be able to determine
how many clusters best explain the data. We will discuss methods for deter-
mining the optimal number of clusters in Section 3.4.

The analyses for this study were run for all k from 1 to 20, with each anal-
ysis repeated 20 times to ensure the consistency of the results. The burn-in
periodwas set to 10,000 generations, and the number ofmcmc repetitions after
burn-in was set to 100,000 generations.We used the admixturemodel, allowing
individuals to originate from more than one population. As mentioned previ-
ously, we prepared two representations of the dialect data, diploid and haploid,
and analyzed both to see if this change in the nature and amount of the varia-
tion data affected Structure’s results. In the results section (Section 4) we focus
primarily on the diploid results, which provide better overall coverage of the
linguistic variation. The haploid results are not discussed in this article, but
their comparisons with the diploid results are summarized in the appendix
(Table 1).

The results of the diploid Structure analyses are presented in two ways (see
Section 4). Firstly, for each k, the repetition with the highest likelihood score
is visualized on a map (Sections 4.2.1–4.2.2, Figs 7 and 8 below). Secondly, the
repetitions of each k value, excluding clear outliers, are summarized using
Structure Harvester (Earl and vonHoldt, 2012) and clumpp (Jakobsson and
Rosenberg, 2007; see Section 4.3.1, Fig. 9 below).

3.3.3 On the Biological Assumptions of Structure
There are two notable biological assumptions embedded in Structure’s algo-
rithm that deserve some attention. Firstly, Structure infers populations that
correspond to the ‘Hardy-Weinberg equilibrium’ (Pritchard et al., 2000), or
hwe, as closely as possible. This is an idealized state in which allele frequen-
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cies do not change across generations. In order for a biological population to
be in hwe, it would need to be infinite in size, unaffected by any kind of natu-
ral selection, and reproducing completely randomly, among others (Hamilton,
2009), a state which is not a valid generalization of real-life populations on a
longer time span. Likewise, for language variants, it would also be unrealis-
tic to remain in hwe, as it would require, among others, a random spread of
linguistic variants across speaker populations and a situation where the fre-
quencies of linguistic variants are not affected by any ‘selective’ force, such as
social selection. These requirements are rarely met: e.g., linguistic variants or
innovations generally have a certain geographical pattern, as language speakers
in geographical proximity often communicate more. Additionally, languages
are constantly changing due to, e.g., contact-induced changes and innovations,
which are not necessarily random. Therefore, the longer the period of time we
are observing, the less plausible it is to assume that languages or dialects have
remained the same and retained a hwe state.

For Structure, the hwe criterion reflects the fact that Structure’s model does
not cover mutation (or innovation), so the populations it infers are the result
of a set of existing alleles mixing at different ratios. From the perspective of
languages, this can be thought of as a situation where variation comes about
predominantly through a process like intraference (Croft, 2000), where existing
linguistic features are adopted by speakers of different dialects at different
ratios.

Populations where the allele frequencies have remained unchanged (i.e.,
populations that are inhwe)would in essence represent ancestral populations,
i.e., populations representative of a linguistic situation spanning far back in
time. Conversely, if the data is not in hwe, as most likely is the case with the
language data, these interpretations cannot be made, and we need to assume
that they reflect a population division that is, on a temporal scale, fairly close
to the age of the data itself. With this in mind, the hwe assumption does not
limit what we can analyze; however, as hwe is unlikely, we need to avoid strong
interpretations of the results that would necessitate it, such as assuming an
unrealistic time depth.

A second assumption that Structure makes is that the variables in the data
are independent: loci should be in ‘linkage equilibrium.’ With genetic data,
when certain gene combinations occur together more often than they would
randomly, they are said to be in ‘linkage disequilibrium.’ This state may arise
through several mechanisms, such as physical linkage: when loci are situated
on the same chromosome and close to each other, the alleles in these loci
tend to be inherited together. If the loci are further away from each other, the
alleles are more likely inherited independently, and thus also more likely to
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be in linkage equilibrium (Hamilton, 2009). Linguistic information does not
resemble genetic information in this regard, because features are not stored
in a physical location. On a cross-linguistic level, implicational universals, i.e.,
features that frequently co-occur across languages, could be seen as analogous
to linked loci. However, Kettunen’s dialect data covers features that highlight
differences between Finnish dialects and are therefore too specific to be uni-
versal. Linkage, in this context, would essentially be the presence of systemati-
cally correlated features of Finnish within the atlas. Indeed, we could expect
certain characteristics within the atlas to have a degree of linkage, such as
the meticulously documented instances of consonant gradation, which other
studies of the dialect atlas, such as Wiik (2004), have suggested to carry redun-
dancy.

Similarly as we did not exclude any data points from the analyses based
on uneven coverage, we also refrained from excluding map pages based on
assumed linkage. For language data, no attestedmethods exist to study linkage
in our type of data.5However, we created one kind of ad-hoc test tomeasure the
extent of linkedness between themap pages in the atlas. Themethod examines
all pairs (x, y) of data points (municipalities) on each pair of map pages (a, b),
checks if the municipalities x and y are linguistically identical (i.e., the same
set of dialectal features are used in both x and y) on map page a, and does
the same for map page b. The cases where x and y are marked as identical on
at least one of the pages are counted as being “potentially linked” (Lp), and
the cases where x and y are linguistically identical on page a as well as page b
are counted as being “actually linked” (La). The calculation discards any cases
where x or y have no identical features on either map page. After checking the
linguistic features for all the possible municipality pairs on a given pair of map
pages and recording La and Lp, we estimate the amount of linkage on that
map page pair as La/Lp, i.e., the number of “actual linkage” cases divided by
the number of “potential linkage” cases. Thus, the metric essentially calculates
howmany pairs of municipalities that had the potential of being linguistically
identical on the two pages under inspection (by being marked with identical
dialect features on either page) were actually marked as identical on both
pages.

5 Some biological linkage tests exist, in particular Lewontin’s d and its derivatives, based
essentially on how much the allele combinations from two loci diverge from the expected
frequencies of randomly combined alleles.We tested the d′ (Lewontin’s normalizedd)metric
for language data, but found out that this metric is not directly applicable to this type of
data.
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All of the map page pairs were compared in this way, with the help of a
custom-made Python script. The results were visualized with r (r Core Team,
2014) usingheatmap.2 from the gplotspackage (Warnes et al., 2014). It should be
noted that the linkage estimation test remains fairly rough, with considerable
room for improvement.

3.3.4 k-Medoids
k-medoids (Kaufman and Rousseeuw, 1987) is a distance-based clustering
method that, like Structure, creates non-hierarchal groups. It is essentially an
improved type of k-means clustering, being less sensitive to outliers than its
predecessor. k-medoids has been used previously to explore lexical data from
the Dictionary of Finnish Dialects (Leino et al., 2006; Hyvönen et al., 2007).

As its input, k-medoids takes data points represented as a set of features
in numerical form (or in mathematical terms, data points represented as fea-
ture vectors in n-dimensional space, n being the number of features). k data
points are randomly selected asmedoids (centers for the groups). The distance
between each medoid and data point in the dataset is calculated, and each
point is assigned to the closest group. After the points are assigned to groups,
the algorithm calculates the total distance from each point to all the other
points in the group. If this distance is lower than the combined distances from
the original medoid point to the other points in the group, the point with the
lowest combined distance becomes the new medoid. If the medoids change
in this way, the algorithm re-evaluates all data points against the newmedoids,
and reassigns them to new groups as necessary. The reevaluation of themedoid
points and the reassignment of the data points continues until the groups do
not change any further, or until the algorithm has gone through a predefined
number of iterations.

The analyses were performed on the same data that was used for Structure’s
diploid analyses, although it had to be represented differently. k-medoids can-
not account formissing data points, so for k-medoids, missing (empty) charac-
ters and absent linguistic features weremarked identically as zeros (Structure’s
data representation, on theother hand, retains thedistinctionbetweenmissing
and absent features). The r package cluster (Maechler et al., 2014) and its com-
mand pamwere used for the analyses, using the default settings. Like Structure,
k-medoids also requires the user to specify the value of k. We had k-medoids
divide the data into 2–20 clusters. Repetitions of the analyses suggested that
the k-medoids clusterings were consistent.
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3.4 Estimating Optimal k Values
Both k-medoids and Structure rely on the user to specify the number of clusters
or populations. It is therefore important to be able to estimate which partition-
ing best explains the data.

The optimal k value in Structure can be estimated more formally using the
δk metric, and less formally from themean log likelihood (Evanno et al., 2005).
The mean log likelihood is calculated (after excluding outliers) by averaging
the log likelihood values from all the repetitions for each k, while δk displays
howmuch themean log likelihoods change for each k valuewhen compared to
the neighboring k values (k–1 and k+1). Thus, when the mean log likelihoods
differ dramatically for a given k value compared to the neighboring k values,
δk is high. Mean log likelihoods and δk were calculated for each k with the r
package pophelper (Francis, 2014).

These two metrics may be used jointly to estimate the kind of partitioning
that is best suited for the data. Commonly the mean log likelihood values are
small with small k values, and more or less plateau for larger k (Pritchard et
al., 2010). In this kind of situation, it is suggested that the smallest k value for
which the mean log likelihood values plateau is usually the one explaining the
data the best. This point should also be the one that is supported by the δk
calculations, as the difference between neighboring values can be assumed to
be highest when reaching the plateau.

To estimate different k values for k-medoids, we used the silhouettemethod
(Rousseeuw, 1986). It examines the relationship of within-dissimilarity (the
average distance among the data points in the cluster) and between-dissim-
ilarities (a data point’s average distance to points in different clusters). For
each data point, its silhouette value compares within-dissimilarity to the low-
est between-dissimilarity, so, essentially, it describes how well a data point fits
its current cluster compared to the neighboring cluster. The silhouette value
lies between –1 (indicating a poorly classified point, i.e., much closer to the
neighboring cluster) and 1 (indicating awell-classified point, with considerable
distance to the next best cluster). Across the entire dataset, we can examine
the average silhouette width, the average of all the silhouette values for a clus-
tering, which shows how well the current k value generally describes the data.
The r package cluster (Maechler et al., 2014) was used to calculate silhouette
values.

3.5 Visualization
Structure’s results for eachmunicipality are given as a set ofmembership coeffi-
cients (ic values, see Fig. 3): each municipality is assigned an ic value for each
inferred population or cluster. The ic values can be regarded as percentages
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figure 3 Two visualization styles for a division of Finnish dialects into 3 populations using
Structure. Municipalities marked in white have not been studied. a) Traditional
Structure barplot output. Each vertical line represents one of the studied 525
municipalities, and the color represents the dialect admixture proportions within
that municipality (the frequencies of the three clusters). b) Frequency data plotted on
a map, with frequencies of each inferred cluster (ic) divided to two classes: more
saturated colors represent the core areas of the dialects, where the ic value is high
(0.75–1); less saturated colors shows the transitional areas, with ic values between 0.5
and 0.75. c) Like b but with five frequency classes, showing the dialect transitions
more accurately.

that sum up to 100% for each data point (municipality), and show how the
inferred populations are mixed on each data point. E.g., when we infer three
populations, a municipality could have a 70% membership for population a,
20% membership for population b, and 10% membership for population c.
These membership coefficients allow flexible visualization.

The standard way of visualizing results of this type would be Structure’s
bar plot representation (Fig. 3a), which shows the full mixture of the dialec-
tal characteristics for each municipality. However, even though this type of
visualization is very detailed, it is not very illustrative if you are interested in
the geographical location of the studied units. To obtain visual clarity for our
main results,we chose to group themembership coefficients into twodistinctly
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figure 4 A close-up of South Ostrobothnia and the surrounding areas with k=8, using three
visualizations: a) Dialects represented with two frequency classes. Municipalities in
white along the coast represent areas without data; between dialects, they represent
strong admixture—i.e., all ic values below 0.5. b) The same result shown as
frequency bars, revealing the dialect admixture better. c) A small part of the map
with percentages shown enlarged for better visibility.

colored main classes, which were plotted onto a map. These two classes were
core dialects (municipalities with ic > 0.75; represented by saturated colors)
and transitional dialects (municipalities with ic = 0.50–0.75; represented by
less saturated colors), as shown in Fig. 3b. Note that the data could also have
been organized in more than two classes (Fig. 3c), but we felt no need for such
fine-grained differentiation for the purposes of this study.

These colored clusters were plotted on a base map representing Finnish
municipal boundaries in the 1920s, digitized with modern Finnish national
topographic database elements using the geographic information system
ArcGIS. Thebasemapwaspreparedby IlpoTammi for the bedlanproject. The
digitization was mainly based on the facsimile of Suomen kartta 1920 (Harju,
2009) and the Atlas of Finland 1925 (Geographical Society of Finland, 1928). Sup-
plementary sources, chiefly theAtlases of Finnish ethnic culture (Vuorela, 1976;
Sarmela, 1994), were used to identify the historical boundaries for extraterrito-
rial areas linked with Finnish dialects.

Our visualization of the results (Figs 7–9 in Sections 4.2 and 4.3 below)
has the setback of displaying just the highest membership coefficient values
instead of the entire mixture. Visualization showing the full mixture of the ic
values is also possible, but this type of visualization would be fairly difficult
to interpret for a geographical area of the size we are studying. Fig. 4 gives
examples of this type of visualization.

Unlike Structure, k-medoids places each data point (municipality) unam-
biguously into one cluster, and consequently does not produce membership
coefficients showing mixture proportions. Cluster membership according to
k-medoids can be visualized on a map by simply showing a unique color for
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figure 5 a) Estimated mean log likelihood of the diploid data of k=1–20 (outliers excluded).
b) δk of the same data with k=2–19.

each cluster. In the visualizations, the k-medoids clusters match with the cor-
responding populations in Structure as closely as possible, and use the same
saturated colors that are used for the “core dialect” class (ic > 0.75) in Struc-
ture. As k-medoids does not generate membership coefficients, its clusters are
more clear-cut than the populations produced by Structure.

4 Results

4.1 The Optimal Number of Clusters
In terms of the most suitable number of clusters for partitioning the data (cf.
Section 3.4 above), that is, the optimal number of dialect populationswe should
assume, the analysis does not yield a coherent picture. In the Structure analysis,
the average likelihoods (Fig. 5a) increase gradually as the k value increases
from 2 to 14, without reaching a clear plateau. With values exceeding k=14, the
likelihoods begin to fluctuate across runs and their mean values decrease. For
k < 14, the changes in the likelihood values are quite small—this essentially
means that the k values between 2 and 14 explain the data almost equally
well, with k=14 being the best by a small margin. Although likelihood values
do not emphasize any specific k value well above all others, the δk values
(Evanno et al., 2005) (Fig. 5b) show a notable peak with k=2, suggesting that
a division into two clusters would represent the best top-level division of the
data.

The average silhouette widths, calculated for the k-medoids clusterings,
range from 0.15 to 0.24 (Fig. 6), indicating that the clusterings are neither too
good nor exceptionally bad. This is generally in line with Structure’s likelihood
values—that is, no k value explains the dialect data significantly better than
the others. Unlike Structure’s log likelihoods, the silhouette values remain fairly
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figure 6 Average silhouette widths with k=2–20

stable also beyond k=14. k=3 appears to be the least suitable of the lower k
values. The average silhouette widths stabilize at k=6 and beyond. k=16 has the
highest average silhouette width, 0.24, albeit by a very small margin.

Except for δk peaking with k=2, the support metrics do not clearly favor any
specific k value. The high silhouette values above k=14 suggest that exploring
clusterings at higher numbers may be of interest, whereas Structure’s likeli-
hoods suggest that they are of less interest. Here we decided to focus on the
clusterings within Structure’s high likelihood area (k=2–14).

4.2 Dialect Clusters
The populations inferred by Structure are generally in line with the clusters
found by k-medoids. Divisions with k values 2–8 (Fig. 7) are most similar
between the two. Divisions with k=9–14 (Fig. 8) show more variation across
analyses, especially in the order in which the clusters or populations appear as
k increases.

In the following, we examine the dialect divisions in detail, beginning with
the more stable divisions (k=2–k=8), followed by the less stable ones (k=9–
k=14). We also compare these with clumpp visualizations (see Section 4.3.1
below), which align repetitions of Structure runs as closely as possible, reveal-
ing solutions that disagree across repetitions. In general, the clusterings are
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figure 7 Dialect divisions k=2–8, with Structure diploid on the top row and k-medoids results
on the bottom row. Structure diploid results use two shades of color to differentiate
between core areas (more saturated colors, ic values 0.75–1) and transitional areas
(less saturated colors, ic values 0.5–0.75). White municipalities in the peripheral
areas are undocumented, whereas white municipalities in central areas indicate
strong admixture (ic values under 0.50). The area shown separate from the rest of
the map indicates Värmland in Sweden, where people from eastern Finland
migrated in the 16th century. The colors for k=8 correspond with the following
dialects: red = Southwest; purple =West Häme; brown = Southeast Häme +
Päijät-Häme; orange = South Ostrobothnia; blue =Middle / North Ostrobothnia +
North Kainuu + Kemijoki; olive green = Far North; green = Savo; gray = Southeast. A
more detailed explanation of the areas is given in Section 4.2.1.

clear, except for some northeastern municipalities that appear as transitional
areas for random dialect clusters from k=6 onwards in Structure, and from k=3
onwards in k-medoids. This is likely due to the scarcity of linguistic features
in those municipalities, as, in k-medoids, they seem to cluster together with
less documented municipalities for higher k values (see Section 4.2.2 for more
details).

4.2.1 Divisions from k=2 to k=8
Except for k=3, Structure and k-medoids suggest essentially identical divisions
for all k values between 2 and 8 (Fig. 7). The first division, k=2, is between
the eastern and western dialect groups. For k=3, the eastern group remains
unchanged in both, but Structure separates the Southwest dialect area (red in
Fig. 7) from the western dialects, while k-medoids splits the western dialects to
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Middle/North Ostrobothnia + Far North (blue) and the rest (purple). For k=4,
the eastern dialect group still remains intact, while in the western dialect area
Häme (purple) appears next to Southwest (red), and the northernmost cluster
(blue) now roughly covers Ostrobothnia and Far North.

With k=5, the eastern dialect area splits into two clusters: Southeast (dark
gray) and Savo (green). Increasing the k value to 6 separates South Ostroboth-
nia (orange) from Middle/North Ostrobothnia + Far North (blue). k=7 sepa-
rates Southeast Häme + Päijät-Häme (brown) from the main Häme dialect,
while k=8makes the Far North dialects (olive green) a separate cluster. To sum
up, in both analyses, a division to 8 clusters yields two eastern dialects (Savo
and Southeast) and six western dialects (Southwest, Häme, Southeast Häme +
Päijät-Häme, South Ostrobothnia, Middle/North Ostrobothnia + North Kainuu
+ Kemijoki, and Far North).

4.2.2 Divisions from k=9 to k=14
Most of the new clusters between k=9 and k=14 (Fig. 8) are subdivisions of the
eastern dialects, with less divisionwithin thewestern dialect area. The analyses
also start to disagree more for higher k values.

Some clusters appearing with these k values are fairly stable between the
two analyses, including the Southwest transitional dialect area (light green;
present for k values 10–14 with both Structure and k-medoids) and Päijät-
Häme (medium blue; appearing with k=11–14 in Structure and with k=14 in
k-medoids). With the appearance of the latter, the brown cluster, formerly
covering Southeast Häme and Päijät-Häme, decreases in size to cover just
Southeast Häme.

Among the less stable clusters, we find Central Karelia (yellow), which
appears first with Structure’s k=10, and later in both analyses, with k=13 and
k=14. The contents of this cluster fluctuate to some extent; with Structure’s k=10
and k=13, it covers Border Karelia (eastern parts), while in other cases it does
not. Some clusters also only appear with one type of analysis: a cluster covering
South Savo + Savonlinna transitional (light blue) appears only in Structure, for
k=12 and k=14; similarly, Central Ostrobothnia (turquoise) only appears with
Structure (k=13), as does Border Karelia (aniline red) for k=14. One unusual,
geographically discontinuous cluster, tentatively pointed out in Section 4.2 and
also marked with aniline red, appears with k-medoids for k values between
9 and 14, covering Border Karelia, Ingria and a small selection of municipali-
ties across the border areas. Upon closer inspection, the municipalities in this
cluster are among those that are less extensively documented by the dialect
atlas, suggesting that k-medoids is more sensitive than Structure to how well-
documented a data point is.
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figure 8 Dialect divisions k=9–14, with Structure diploid results presented in the top row and
k-medoids results in the bottom row. The areas with the same color do not
necessarily represent identical dialect areas across the maps. Other details are
discussed for Figure 7. A more detailed explanation of the areas is given in Section
4.2.2.

One area that deserves further attention is the dark red cluster, covering
areas in Central Finland, Kainuu, and the Savonian Wedge. These appear as
one large (discontinuous) cluster with k=11 in k-medoids, while the Structure
analyses point more towards a strong transition in this area, with either end
varyingly serving as the core area; Structure’s k=9 and k=13 show Central Fin-
land as the core, and the other partitions (k=11, k=12, k=14) show Kainuu as the
core. With higher k values, k-medoids also distinguishes the core areas as sep-
arate clusters. In these cases, Central Finland is colored gray and Kainuu dark
red.

Finally, we should also note that the fluctuation in the eastern area is re-
flected in the shape of the green cluster identified as Savo with lower k values,
which reduces to either East Savo (k=9, k=11, and k=13 in Structure, k=11–14 in
k-medoids) or North Karelia + North Savo (k=12 and k=14 in Structure).
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4.3 Stability of the Results
4.3.1 Comparing Different Diploid Runs with clumpp
The results in Figs 7–8 only show the Structure runs with the highest likeli-
hoods. However, because of the stochastic nature of Structure, the results can
vary across runs, evenwhen the same k value and general parameters are used.
In some cases, we may see label switching—i.e., the different repetitions with
the same k value identify the same clusters, but show them in a different order
in Structure’s results. The different runsmay also reveal genuinemultimodality,
where independent runs with the same k value produce qualitatively different
clusterings.

To overcome the problem of needing to choose a single Structure run to
represent the results of a given k value, the results of multiple runs can also be
combined using a tool called clumpp. The tool takes Structure’s results, aligns
the populations from the analyses performed with the same k value so that
they match each other as closely as possible (solving possible label-switching
problems), and produces a combined result from the membership coefficients
of all the runswith the samekvalue. As a consequence, caseswhere the clusters
match each other well in different repetitions of k appear similar to how they
are shown in the highest likelihood run, whereas areas where the inferred
populations differ across repetitions becomemore ambiguous and showmore
transitions across the populations.

Differences between the clumpp visualizations (Fig. 9) and the highest
likelihood runs (top row in Figs 7–8) show that repetitions with the same
k value do not always identify the same clusters as the highest likelihood
run for that k value. Compared to the highest likelihood runs, the clumpp
visualizations show more admixed populations. For instance, the Southwest
dialects (light red in Fig. 9) as well as the south of Häme (light blue in Fig. 9)
appear as more admixed areas with k=3 than they did with the corresponding
highest likelihood run (Fig. 7, where these areas were unambiguously red and
blue), suggesting that some of the repetitions identified different populations.
Based on the pattern the admixture shows, the conflicting populations might
be somewhat closer to the results of the k-medoids analyses. For k=4, the
Southwest dialects become more coherent (red in Fig. 9), indicating that the
independent repetitions agree on that area, whereas Häme and the lower part
of the eastern dialects are more ambiguous, showing light purple and light
green areas, which essentially suggests that some of the repetitions for k=4
identified the Southeast dialects rather than Häme.

Some of the highest likelihood Structure populations agree well with the
clumpp visualizations, indicating that they are quite stable—e.g., the east-
ern and western dialect clusters. There are also some dialect areas that do not
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figure 9 Dialect divisions k=2–14 visualized with clumpp after excluding outliers. Color pairs
for clusters below the maps are in the order of appearance to assist in observing the
appearing clusters and their frequency.

appear directly in the clumpp visualizations, although they were present in
the highest likelihood runs, such as Central Ostrobothnian and Central Karelia
(turquoise and yellow, respectively, in Figs 7–8). Also, the Southwest transi-
tional area (light green), which consistently showed up in all highest likelihood
visualizations starting at k=10, appears only weakly with k=14 in the clumpp
visualization. This suggests that these areas are not necessarily as robustly sup-
ported by the variation data from the atlas as the other dialectal areas.

4.3.2 Comparing Structure Diploid, Structure Haploid and k-Medoids
Looking further into the stability of the dialect clusters inferred in the anal-
yses, we compared the k-medoids results with Structure’s diploid as well as
haploid results (the details of these comparisons can be seen in the appen-
dices). Despite differences between the analysis methods, differences in data
representation, and the smaller amount of represented dialectal variation in
the haploid data compared to the diploid data, the three sets of results are
surprisingly close to one another with lower k values (2–8). With these val-
ues, all the approaches classify the dialects identically, with the exception of
k=3, which is in agreement only between the two Structure runs. With higher
k values, the results begin to disagree somewhat more, as was already seen in
Section 4.2.2.
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figure 10 Heat map and histogram for the municipality pair comparisons for each map sheet.
The data points along the horizontal and vertical axes correspond to the map pages
of the atlas. The color scale represents the level of linkage, with red (1.0) representing
a high linkage percentage, and yellow a low linkage percentage (0.0).

4.4 Testing for Linked Features
Aswasmentioned in Section 3.3.3, Structure assumes that the data is in ‘linkage
equilibrium,’ meaning that it should cover only independent loci (or, in our
case, uncorrelated linguistic features). Although we explored the data as a
whole, we also tested for possible connectedness of the features, using an
approach based on counting the number of municipality pairs with identical
dialect features across map pages (see Section 3.3.3 for a more detailed outline
of the approach). The heat map resulting from this test is given in Fig. 10.

The histogram indicates that connectedness between the linguistic features
is generallymodest or low (yellow-orange). Potential problemswith correlating
features lie in the features located on the right side (red). As a whole, the
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map pages do not seem to be extensively linked to one another; but there
are some map pages that produce somewhat higher linkage estimates than
others, e.g., the map pages 70–80. However, upon closer inspection, some of
these higher linkage estimates appear to be focused on maps covering smaller
geographical areas. As the linkage test discards municipalities without any
recorded dialect features in these cases, the estimates are based on a smaller
number of municipality pairs. These cases are identifiable from the results by
examining howmany potential linkage (Lp) and actual linkage (La) cases were
recorded when comparing the pages, and filtering out cases whose Lp or La
values are below a certain threshold (the appendices include an example heat
map filtered in this way). Notably, the linkage test in its current form produces
biased results on map pages which contrast a dialect variant with a very small
geographical area with another variant covering the remainder of the map. In
these cases, the large remainder, which has no internal variation, misleadingly
produces high linkage estimates when it is compared with the features on any
other map page. Such a case can be seen, for instance, on map page 137, which
contrasts a characteristic feature limited to a particular area within the eastern
dialects with a feature covering the rest of the map; this shows up as a reddish
stripe at the corresponding position on the heat map, misleadingly suggesting
systematic linkage of this map page to all other pages.

5 Discussion

Our results suggest that Structure and similar population genetic clustering
tools could be of value for linguists investigating intra-lingual data once it has
been appropriately formatted; population genetic clustering inferred Finnish
dialect areas quite sensibly. Below we sum up the results and the restrictions
of the analyses, and describe how the results might serve as a basis for further
study.

5.1 Individual Dialect Divisions vs. Principal Dialect Areas of Finnish
The general focus of this paper is less on amending the Finnish dialect divi-
sion and more on exploring the suitability of new methodology for modeling
dialectal diversity. In this section, we briefly look at the results against the prin-
cipal dialect divisions outlined in the literature (2, 3, or 4 dialect areas), and also
examine how the division into eight dialect areas that our methods produced
compares with the traditional eight dialect areas (see Itkonen, 1964).

The δk values suggest the two-way division (k=2) as the best top-level hier-
archal division. The results of k=2 are a fairly accurate match with traditional
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eastern andwestern dialect areas. They are generally very uniform,with the dif-
ferent analyses showing only minute differences along the borders. Structure’s
results are more descriptive, also showing the transitional areas along the bor-
der. The two-way split remains fairly uniform with the haploid analysis, and
the stability of the diploid east-west division can also be seen in the clumpp
visualization. Considering the emphasis on morphophonological features in
Kettunen’s atlas, this is the expected result.

Three-way divisions have slightly higher likelihoods than the two-way divi-
sion with Structure, but are not supported by average silhouette values or δk
values. Different analyses disagree to some extent on how the data should be
dividedwith k=3. Interestingly, however, the suggestions line up fairlywell with
different divisions proposed in the literature. The k-medoids result is a rea-
sonably close match with the three-way division from Leino et al. (2006) and
Hyvönen et al. (2007). Structure’s highest likelihood, on the other hand, seems
to follow the three-way division originating from Lenqvist, later discussed in
Paunonen (1991; 2006) and Mielikäinen (1991), with Southwest standing out as
a principal dialect area. clumpp visualization for k=3 shows fuzzier popula-
tions especially aroundHäme, suggesting disagreement between the Structure
runs.

The four-way division in the present analyses differs fromPaunonen’s (2006)
four-way division, with South Ostrobothnia grouped together with Middle/
North Ostrobothnia dialects and Far North, and not with Southwest transi-
tional dialects and Häme dialects as in Paunonen. Here, again, Structure’s like-
lihood is slightly higher, but the division is otherwise not strongly supported.

As for k=8, one notable difference between our results and the customary
eight-way dialect division of Finnish is the absence of the Southwest transi-
tional dialect area (which only appears with higher k values) for k=8, and its
replacement with Southeast Häme (see, e.g., Rapola, 1969; Wiik, 2004). How-
ever, this division is still compatible with the east-west dichotomy, with six
western and two eastern clusters, emphasizing how strongly the two-way divi-
sion is rooted in the data.

An interesting experiment for future studies might be to subdivide the pop-
ulations produced by k=2 separately, as is done for a different type of data in
Evanno et al. (2005). By doing so, we could also attempt to explore the robust-
ness of the traditional eight-way division of Finnish, which is subordinate to
the two-way division.
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5.2 Inferred Dialect Clusters Compared with Existing Knowledge of
Finnish Dialect Areas

In addition to looking at divisions with specific k values, we also visually
compared our inferred dialect clusters with dialect division maps found in
the literature, including Kettunen (1940a), Hakulinen (1950), Rapola (1969),
Hormia (1978), Mielikäinen (1994), Savijärvi and Yli-Luukko (1994), Itkonen
(1964; 1989),6 as well as some of the dialectometrical maps from Wiik (2004).
This was done by scanning the maps from the literature and scaling them
in such a way that they matched our dialect maps with clusters as closely as
possible. Overlapping the images of the maps provided a fairly straightforward
way to compare not only our results to traditional dialect maps from the
literature, but also our results produced with different datasets to each other.

By comparing the highest likelihood visualizations of the Structure analyses
with the visualizations of the k-medoids analyses of the same k-value, and
also inspecting the runs with different k values against each other, we could
group the clusters into 38 distinct dialect areas with specific borders. 20 of
these dialect areas corresponded closely to the dialect divisions shown in
the literature. Structure’s highest likelihood analyses across different k values
covered 18 of these attested dialect areas, and k-medoids covered 17.

Some general trends were also apparent from the visual comparisons. For
instance, thewestern dialect areasweremuchmore stable and coherent across
the analyses, while the eastern dialects fluctuated more. This could reflect
general differences in the histories of western and eastern Finns: in the east,
gradual expansion to the north and slash-and-burn agriculture made the pop-
ulations more mobile than the people in the west, who had more stable settle-
ments and land ownership (Virrankoski, 2012). The ambiguity in the east could
also reflect the relatively young age of the dialects in this area. For instance,
according toWiik (2004), the Savo dialects only emerged around 1000 years ago,
and their gradual expansion andmixingwith other dialectswas still in progress
around 300 years ago. In any case, an in-depth look into the dialect transitions
could be of interest in the future.

5.3 Using Population Genetic Clustering as a Basis for Further Study
The correspondence between the results of the different methods, along with
good agreement with traditional dialect areas, suggests that dialect data can
be examined successfully with population genetic tools. Proper verification of
the approach creates a solid basis for future applications of microevolutionary

6 Most of these maps can be found in Wiik (2004).
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methodology, which provide a huge potential for shedding light on linguis-
tic phenomena. However, the present study has only scratched the surface of
applying population genetic tools to the research on dialect material. Popu-
lation genetics provides a framework and the tools to examine questions on
language-internal variation, such as how the linguistic variation is (spatially)
organized, why the dialects emerged and how they are maintained. Indeed,
Wieling and Nerbonne (2015) call for studies that focus on resolving factors
underlying linguistic variation. We hope that the approach presented in this
paper contributes to achieving this goal.

The focus of this paper is on thoroughly exploring the cornerstone of many
population genetic analyses—clustering the data as populations. As a side
note, we now present some additional examples of the possibilities themodel-
based clustering methods provide for further studies. In the methods section,
wehave already shown that the results themselves canbe visualized in a variety
of ways, according to the needs of the study. Here, we give two examples of how
the membership coefficients can be used for calculating newmeasurements.

The membership coefficients include information that reflects population
admixture, and these values can be used to quantify how diverse the language
of a given municipality is. This diversity may be calculated, for example, with
the Shannon-Wiener diversity index h (also known as Shannon’s entropy; Leg-
endre andLegendre, 2012), which is one of the diversity indices commonly used
in ecology to measure the diversity of ecological communities. In general, it
uses proportions of characters of interest to calculate the diversity, for which
we can use the inferred ic values. The index h is calculated bymultiplying each
ic value of a givenmunicipality with its logarithm and taking the negative sum
of all these values, i.e.:

H = −
q

∑
i=1

pi log(pi)

In the case of languages, for a given municipality, the index is low when the
amount of linguistic diversity is low, that is, when traits specific to one dialect
are dominant in the municipality (Fig. 11). In contrast, the index is high when
themunicipality harbors traits typical of multiple dialects, and the dialects are
present in equal frequencies. Diversity values could be further compared to
other spatial attributes to understand why high linguistic diversity is found in
certain areas but not in others.

The similarity of the inferred populations in relation to one another is
another feature that we cannot directly see from Structure’s membership coef-
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figure 11 Shannon-Wiener indices (swi) calculated for each municipality after
dividing the data into seven populations. swi are divided into ten
equal-sized classes: from the smallest swi, indicating the lowest amount
of linguistic diversity (municipalities colored with white), to the class of
the largest swi, indicating the largest amount of linguistic diversity
(municipalities colored with black).
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ficients. Structure essentially produces populations with which it can describe
the entirety of the data, but it does not show how (linguistically or genetically)
similar or different these populations actually are. Quantifying the linguistic
differences between the inferred dialect populations could be a topic of inter-
est, for example, in studying drivers of dialectal divergence (which is the focus
of our forthcoming paper, Honkola et al., ms). A population geneticmetric that
allowsus to shed light on this issue is fST, which estimates the amount of genetic
differentiation between populations. A related metric, φST, has been used out-
side of biology to study differences between folktale types (Ross et al., 2013).

In principle, fST measures how much reduction there has been in heterozy-
gosity (i.e., changes in the allele frequencies) due to subpopulation divergence
(Hamilton, 2009). Thus, it compares the total expected heterozygosity of all the
populations (hT) with the averaged expected heterozygosity of the studied sub-
populations (hS), and is calculated with the following formula:

FST = HT − HS
HT

If the expected averaged heterozygosities of the subpopulations equal the total
expected heterozygosity of all the populations (hT = hS), fST is zero, i.e., the
allele frequencies in the different subpopulations do not differ fromeach other.
This would suggest that there is no population structure. However, if these
values differ, this suggests that the population has an inferable substructuring.7
Further, large fST values indicate large differences in the allele frequencies
of the populations and thus greater differentiation, while small values reflect
more similar allele frequencies and, consequently, smaller differences between
populations.

The expected heterozygosities needed for the calculation of fST are deter-
mined from the observed allele frequencies in a population. Therefore, it is pos-
sible to calculate the expected ‘linguistic heterozygosities’ from the observed
frequencies of different linguistic variants. For the example analysis shown
here, we isolated the core areas from the results of a k=14 analysis, i.e., munici-
palities with ic values > 0.75 (Fig. 12). We then determined the linguistic differ-
ences between the core areas with fST. The fST values shown here (Fig. 13) were
calculated usingGenAlEx (Peakall and Smouse, 2006, 2012), but there aremany
other tools available.

7 Inferring population structure from the differences between heterozygosities is based on
the idea that, if there is a subpopulation structure, the subpopulations differ in their allele
frequencies, and their averaged heterozygosity cannot be as high as in the total population.
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figure 12 Core areas identified from a k=14 Structure run using an ic value threshold
of 0.75
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figure 13 Pairwise fST values, indicating linguistic differences of the populations
presented in Fig. 12. The color codes in Fig. 12 match the ones in Fig. 13.

As Fig. 13 shows, the fST values vary between 0.81 and 0.42, reflecting stronger
differences than one tends to find with comparable biological data. It is likely
that the nature of the dialect data affects this: unlike genetic data, which covers
a systematic sample collected without an intention of maximizing population
differences, the dialect atlas covers features that serve to highlight the con-
trasting characteristics of Finnish dialects. From a linguistic perspective, our
fST values are generally distributed as one would expect them to; for instance,
the six highest pairwise fST values are all in line with the east-west dichotomy.
The six lowest fST values indicate similarity between 1) Savo, Karelia and South-
east dialects, 2) the Häme dialects and the Southwest transitional dialects, and
3) Kainuu dialects and Middle/North Ostrobothnia,8 all of which are plausi-
ble transitional areas (cf., e.g., Wiik, 2004). We have used these values else-
where and compared the dialectal differences to geographical distance and
differences in cultural and environmental conditions between the same areas
(Honkola et al., ms.).

8 The low fST values between Kainuu and Central/North Ostrobothnia reflect what is shown
on map 14 in Wiik (2004)—that is, the border between the eastern and the western dialect
areas is the least clear-cut around this area. Notably, Hyvönen et al. (2007) also produced
a combined cluster of Kainuu and Central/North Ostrobothnia using lexical data, further
highlighting the fuzziness of the east-west border in this area.



272 syrjänen et al.

Language Dynamics and Change 6 (2016) 235–283

6 Conclusion

In this paper we endeavored to take Finnish dialect studies to a less explored
methodological direction, examining the dialect atlas of Finnish with popu-
lation genetic and distance-based clustering. We have been fortunate to have
the vast existing knowledge on Finnish dialects at our disposal, which has also
allowed us to focusmore onmethodological matters. We did not dig extremely
deep into the intricacies of the Finnish dialect division, and instead focused
more on exploring new approaches for analyzing the Dialect Atlas of Finnish
and discussing analogies between intra-lingual and within-species variation,
which form the core of this approach.

The results suggest that population genetic clustering performs reasonably
wellwith dialect data. In general, the clusterings didnot significantly clashwith
existing dialect research, and although there are notable differences between
biological allele and dialect datasets, population genetic clustering was able
to capture dialect variation quite well. The different analyses produced fairly
consistent results, especially with lower k values. Although the traditional k-
medoids clustering was also quite efficient in inferring dialect clusters, a clear
advantage for Structure consists in its resultingmembership coefficient values,
which allow for detailed visualization (e.g., soft clusters) and make it possible
to explore the proportion of admixture asmeticulously as one desires in further
research.

The expectations built into biological analysis tools and their potential
effects on the results are an important matter to consider when dealing with
non-biological data. Firstly, Structure’s algorithm models populations as sets
of allele frequencies that are compared to the allele frequencies of the “model
population,” with allele frequencies in Hardy-Weinberg equilibrium (hwe).
This does not mean that the input data needs to be in hwe. Therefore, hwe
does not truly limit what we can study, but it can limit the interpretation of
the results. If the object of our study is not in hwe, its allele frequencies are
undergoing a change although the analysis assumes them to remain the same.
In this case, we run into problems if we assume that the populations inferred
by Structure are accurate representations of populations much more ancient
than the data we have analyzed, especially if the inferred population is small.
Secondly, for all statistical analyses, the variables should be independent from
each other; in the case of Structure, the assumption is that each of the loci
(dialectal features) should be independent from the other loci. We could not
find a test for feature-wise linkage for this kind of linguistic data that could be
readily adopted; this prompted us to devise a simple preliminary test for this
purpose,whichdidnot point to significant linkage in thedialect atlas.However,
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as the method we used is a preliminary metric that has not been extensively
tested, the matter of linkage should be given further attention in future stud-
ies.

Computational approaches in historical linguistics, such as phylogenetics,
have initiated a field in linguistics essentially analogous to the study of macro-
evolution of biological species. The population genetic framework,which oper-
ates on a microevolutionary level, can be used to study variation within a lan-
guage. Here, we have adopted this approach for dialect study and present some
possible applications, in the hope that this approach will open new doors for
studying linguistic variation in the future.
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Appendices

table 1 Clusterings compared to one another. The cells shaded grey highlight the differences
between the clusterings. In each row, the cells may be all white (indicating that the
same cluster could be identified from all the clusterings), one cell may be grey and
two white (indicating that two of the analyses agreed with one another while the
third one disagreed), or one cell may be white and two have different shades of grey
(indicating that the three analyses disagreed).

Structure (diploid) Structure (haploid) k-medoids

k=2 Eastern Eastern Eastern
Western Western Western

k=3 Eastern Eastern Eastern
Western w/o Southwest Western w/o Southwest Middle / North Ostrobothnia +

Far North
Southwest Southwest Southwest + Häme + South

Ostrobothnia

k=4 Eastern Eastern Eastern
Southwest Southwest Southwest
Häme Häme Häme
Ostrobothnia + Far North Ostrobothnia + Far North Ostrobothnia + Far North

k=5 Southwest Southwest Southwest
Häme Häme Häme
Ostrobothnia + Far North Ostrobothnia + Far North Ostrobothnia + Far North
Savo Savo Savo
Southeast Southeast Southeast

k=6 Southwest Southwest Southwest
Middle / North Ostrobothnia +

Far North
Middle / North Ostrobothnia +

Far North
Middle / North Ostrobothnia +

Far North
Häme Häme Häme
Savo Savo Savo
Southeast Southeast Southeast
South Ostrobothnia South Ostrobothnia South Ostrobothnia
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Structure (diploid) Structure (haploid) k-medoids

k=7 Southwest Southwest Southwest
Middle / North Ostrobothnia +

Far North
Middle / North Ostrobothnia +

Far North
Middle / North Ostrobothnia +

Far North
Savo Savo Savo
Southeast Southeast Southeast
South Ostrobothnia South Ostrobothnia South Ostrobothnia
West Häme West Häme West Häme
Southeast Häme + Päijät-Häme Southeast Häme + Päijät-Häme Southeast Häme + Päijät-Häme

k=8 Southwest Southwest Southwest
Savo Savo Savo
Southeast Southeast Southeast
South Ostrobothnia South Ostrobothnia South Ostrobothnia
West Häme West Häme West Häme
Southeast Häme + Päijät-Häme Southeast Häme + Päijät-Häme Southeast Häme + Päijät-Häme
Far North Far North Far North
Middle / North Ostrobothnia +

North Kainuu + Kemijoki
Middle / North Ostrobothnia +

North Kainuu + Kemijoki
Middle / North Ostrobothnia +

North Kainuu + Kemijoki

k=9 Southwest Southwest Southwest
East Savo Savo Savo
Southeast Southeast North + Border Karelia + Ingria

+ Coastal
South Ostrobothnia South Ostrobothnia South Ostrobothnia
West Häme West Häme West Häme
Southeast Häme Southeast Häme + Päijät-Häme Southeast Häme
Far North Far North Far North
Middle / North Ostrobothnia +

North Kainuu + Kemijoki
Middle / North Ostrobothnia +

North Kainuu + Kemijoki
Middle / North Ostrobothnia +

North Kainuu + Kemijoki
Central Finland Southwest transitional Southeast Proper + Savitaipale /

Lemi

k=10 Savo Savo Savo
South Ostrobothnia South Ostrobothnia South Ostrobothnia
West Häme West Häme West Häme
Southeast Häme + Päijät-Häme Southeast Häme Southeast Häme
Far North Far North Far North
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(cont.)

Structure (diploid) Structure (haploid) k-medoids

Middle / North Ostrobothnia +
North Kainuu + Kemijoki

Middle / North Ostrobothnia +
North Kainuu + Kemijoki

Middle / North Ostrobothnia +
North Kainuu + Kemijoki

Southwest Southwest Southwest
Southwest transitional Southwest transitional Southwest transitional
South Karelia Southeast Southeast Proper + Savitaipale /

Lemi
Central Karelia Päijät-Häme North + Border Karelia + Ingria

+ Coastal

k=11 Southeast Southeast Southeast Proper + Savitaipale /
Lemi

South Ostrobothnia South Ostrobothnia South Ostrobothnia
West Häme West Häme West Häme
Southeast Häme Southeast Häme Southeast Häme + Päijät-Häme
Far North Far North Far North
Middle / North Ostrobothnia Middle / North Ostrobothnia Middle / North Ostrobothnia +

North Kainuu + Kemijoki
Southwest Southwest Southwest
Southwest transitional Southwest transitional Southwest transitional
Kainuu + Savonian Wedge Kainuu + SavonianWedge Central Finland + Savonian

Wedge + South Kainuu
East Savo East Savo East Savo
Päijät-Häme Päijät-Häme North + Border Karelia + Ingria

+ Coastal

k=12 Southeast Savo North + Border Karelia + Ingria
+ Coastal

South Ostrobothnia South Ostrobothnia South Ostrobothnia
Southeast Häme Southeast Häme Southeast Häme
Far North Far North Far North
Middle / North Ostrobothnia South Karelia Middle / North Ostrobothnia
Southwest Southwest Southwest
Southwest transitional Southwest transitional Southwest transitional
Päijät-Häme Päijät-Häme East Savo
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Structure (diploid) Structure (haploid) k-medoids

North Karelia + North Savo Central Karelia Southeast Proper + Savitaipale /
Lemi

Kainuu + Savonian Wedge Central Ostrobothnia proper Kainuu + SavonianWedge
South Savo + Savonlinna

transitional
Central Ostrobothnia highlands

+ North Ostrobothnia
West Savo

West Häme West Häme West Häme

k=13 South Ostrobothnia South Ostrobothnia South Ostrobothnia
West Häme West Häme West Häme
Far North Far North Far North
Southwest Southwest Southwest
Southwest transitional Southwest transitional Southwest transitional
Central Finland Middle / North Ostrobothnia Middle / North Ostrobothnia
East Savo Southeast East Savo
Päijät-Häme Päijät-Häme North + Border Karelia + Ingria

+ Coastal
South Karelia South Savo South Karelia
Central Karelia North Karelia + North Savo Central Karelia
Southeast Häme Southeast Häme Southeast Häme
Central Ostrobothnia proper Kainuu + Savonian wedge +

Ostrobothnia highlands
Kainuu + SavonianWedge

Central Ostrobothnia highlands
+ North Ostrobothnia

Border Karelia + Southeast Savo West Savo

k=14 South Ostrobothnia South Ostrobothnia South Ostrobothnia
West Häme West Häme West Häme
Southeast Häme Southeast Häme Southeast Häme
Far North Far North Far North
Middle / North Ostrobothnia Southeast Middle / North Ostrobothnia
Southwest Southwest Southwest
Southwest transitional Southwest transitional Southwest transitional
Päijät-Häme Päijät-Häme Päijät-Häme
South Karelia Savo-Vyborg transitional South Karelia
Central Karelia Central Ostrobothnia highlands

+ North Ostrobothnia
Central Karelia
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(cont.)

Structure (diploid) Structure (haploid) k-medoids

North Karelia + North Savo North Karelia + North Savo East Savo
Kainuu + Savonian Wedge Central Ostrobothnia proper Kainuu + SavonianWedge
South Savo + North Karelia +

Border Karelia
South Savo + Savonlinna

transitional
North + Border Karelia + Ingria

+ Coastal
Border Karelia Border Karelia Central Finland

table 2 Percentage of disagreeing clusters with different analyses
across different k values, calculated by dividing the number of
disagreeing clusters by the k value. E.g., with k=3, two clusters
out of three (67 percent of all the clusters) disagreed between
the analyses.

k Str (diploid) vs. Str (diploid) vs. Str (haploid) vs.
k-medoids Str (haploid) k-medoids

2 0 0 0
3 0,67 0 0,67
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0,33 0,33 0,33
10 0,30 0,30 0,20
11 0,45 0 0,45
12 0,33 0,42 0,50
13 0,31 0,46 0,38
14 0,21 0,29 0,50
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figure 14 A linkage test heat map filtered by removing data points where the potential linkage
(Lp) value was less than 25% of the highest Lp value in the results. This illustrates
one way of identifying more reliable estimates.




